Bladder Brachytherapy - ready for a change?

Gabriel Kacsó, MD, PhD

Assoc.Prof. “Iuliu Hatieganu” Medical University of Cluj
Medical Director, Amethyst Radiotherapy Center Cluj

The 5th Progress in Uro-Oncology Meeting, Cluj 25-26 September 2014
OUTLINE

1. Compare bladder sparing strategies vs. cystectomy for muscle invasive B.cc.

2. BT in the bladder sparing approach

3. Bladder Brachytherapy (BBT) technique
Driving force = bladder preservation

Radical (total) cystectomy + ...♀, ♂
à DSS10 = 75-(85)% pT(1)-2, 30-35% pT3-4N0/pN+
à 10 yOS ≈ 50% for pT2No, 25% for pT3-4 or pN+

à "Major" complications: ~ 50% (acute & late)

à 2-7% per/postop. Mortality

But TCC is a Radio & chemo-sensitive cancer!

(⇒ pCR 40-50% after preop RT or after na.CT)
Bladder preservation attempts (BPA)

1) concom. Radio-Chemotherapy = RCT (* 3 M*)
maximal TURB \rightarrow neoadj CT \rightarrow RCT (< 15% of pts)

Cystectomy ~ 25% (10% UK; 35% US)

2) Preop. short EBRT + Partial cystectomy + Interstitial postop. Brachytherapy (*m3M*= no chemo)
 - highly selected T2 patients (< 5% of pts)

3) < 3M (TURB alone or + chemo) < 10 % of pts
 + RT = BT only)
BPA vs. radical cystectomy

- no randomised trials!

- SPARE trial (CRUK/07/011) - failed to accrue
 (Moynihan C et al, Trials 2012; 13: 228)

à Large cohort studies, prospective & NR

Biases: \(pT \) vs. \(cT \);

 (+) vs. (−) neoadj/ c/ adj chemo..
BPA vs. radical cystectomy

<table>
<thead>
<tr>
<th>Ref</th>
<th>nb. Pts.</th>
<th>5y OS (%)</th>
<th>10y OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical Cystectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSS = +15%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radical Cystectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madersbacher (JCO 2003)</td>
<td>320</td>
<td>T1-2: 65</td>
<td>T1-2:45</td>
</tr>
<tr>
<td></td>
<td>(37 % ≥ pT3)</td>
<td>T3: 40 %</td>
<td>T3:30 %</td>
</tr>
<tr>
<td>Hautmann (Eur Urol 2012)</td>
<td>560</td>
<td>T2: 55</td>
<td>T2: 44</td>
</tr>
<tr>
<td></td>
<td>(28 % ≥ pT3)</td>
<td>T3: 45</td>
<td>T3: 30</td>
</tr>
<tr>
<td>3M (RCT)</td>
<td>331 pts</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>Efstathiou [splitRT]</td>
<td>348</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>(Eur Urol 2012)</td>
<td>(35 % ≥ T3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3M (EBRT+TUR/PC +BT)</td>
<td>1040</td>
<td>62</td>
<td>44</td>
</tr>
<tr>
<td>Koning (Ann Oncol 2012)</td>
<td>58</td>
<td>T1:69; T2: 60; T3: 38</td>
<td></td>
</tr>
<tr>
<td>Aluwini (IJROBP 2014)</td>
<td>192</td>
<td>65</td>
<td>46</td>
</tr>
</tbody>
</table>
BPA vs. Radical Cystectomy

<table>
<thead>
<tr>
<th>Ref</th>
<th>nb. Pts.</th>
<th>5y OS (%)</th>
<th>10 Y OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical Cystectomy</td>
<td></td>
<td>CSS = +15%</td>
<td></td>
</tr>
<tr>
<td>Madersbacher (JCO2003)</td>
<td>320</td>
<td>T1-2: 65</td>
<td>pT2N0: 45 %;</td>
</tr>
<tr>
<td></td>
<td>(37 % ≥ T3)</td>
<td>T3: 40 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1-2:45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3: 30 %</td>
<td></td>
</tr>
<tr>
<td>Hautmann (Eur Urol 2012)</td>
<td>560</td>
<td>T2: 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(28 % ≥ T3)</td>
<td>T3: 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2: 44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3: 30</td>
<td></td>
</tr>
<tr>
<td>METS</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3M (RCT)</td>
<td>331 pts</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodel (JCO 2006)</td>
<td>331 pts</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efstatthiou [splitRT]</td>
<td>348</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>(Eur Urol 2012)</td>
<td></td>
<td></td>
<td>(72 % Cy-free SV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3M (EBRT+TUR/PC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koning (Ann Oncol 2012)</td>
<td>1040 (10% ≥ T3)</td>
<td>62</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Crevoisier (R&O2004)</td>
<td>58 (12% ≥ T3)</td>
<td>T1:69; T2: 60; T3: 38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluwini (IJROBP 2014)</td>
<td>192 (6.2% T3)</td>
<td>65</td>
<td>46 (85% Cy-freeSV)</td>
</tr>
</tbody>
</table>
Un-met needs

1. Improve distant control
 - 35-50 % distant mets

2. Improve local control
 - 35-50 % bladder “rec”
 - Multifocality / new T
 - Superficial rec. (1/2)
 \[\rightarrow \text{BLADDER SPARING}\]

3. RANDOMIZED TRIALS
 - multidisciplinarity

\[\rightarrow \text{à (Neo)/ Adjuvant chemo ? à \text{Brachy ?}}\]

\[\text{à \text{ Brachy ? \text{“Focal therapy” ? \text{(treat only the dominant lesion)}}}}\]

\[\rightarrow \text{à \text{…. Uniform toxicity scales \text{…. Uniform geriatric eval.}}}\]
RCT- what doses of RT?

• EBRT: 45Gy/ 25fr/ 5 wks + boost < 20 Gy. (boost1 → 54 Gy; boost 2 → 64.4 Gy) → LC5:65%

• (30)-40 Gy EBRT + 30- (40 Gy) BT → LC5= 80%

• 0 Gy → no loss in OS but ~ 33 % in bladder preservation vs. Chemo alone!

→ RADIATION is important for bladder sparing
Candidates for bladder 3M

 ► "Ideal": MOTIVATED PATIENT
 T2N0, no HNF, no CIS, G1/G2, LVI(-), with macroscopically completely resected T. (max TURB!), no stromal prostate invasion*

 + for brachy: solitary T (also T1G3?)
 < 5 cm
 without bladder neck-invasion

Bladder brachytherapy

- High dose, small volume

- Only + SURGERY (TURB/ Partial Cy+ LND)

- Usually as a complement to EBRT
 - most of the BT series = preop EBRT ≈ 10 Gy hF (not needed after TUR or robotic/ lap PC!) \(\rightarrow\) BT only(?)
 - Dutch: = real “boost” (EBRT 40Gy/20fr + 25-30 Gy BT, LDR or PDR)
Not suitable for bladder sparing 3M but potential for BT?

- active inflammatory bowel/ chronic pelvic inf
- severe irritable bladder
- previous pelvic RT or extensive Surgery
“New indications” for Brachy?

- Only BT (without EBRT)?
 - good responders after na chemo?
 - mark the initial T limits (metallic clips)
 - no treatment on LN (?)

- 4M (TURB/PC+ chemo+ EBRT + BT)?
 - optimal sequence?
Toxicity = PRO for BT
Toxicity

NCI- C (Coppin, JCO, 1996): T3 → RT vs. RCT/ Cisplatin Better long-term local control (47 vs. 67%), same OS!

UK (James, NEJM 2012): - 360 p. → RCT/ 5FU-MMC vs. RT: Better Loco-reg DFS; OS=!

--> G3-4 toxicity:
- acute = 36 vs. 27 % (p=0.07)
- late = 8.3 vs. 15.7 % (NS)
 (GU= 7.5 %, GI= 0.8 %,)

 ----> death due to treatment < 1%

Cystectomy
30-35 %
15- 20 %
≈5 %

Brachy:急性: 10-15 %
late*: GU= 5.7 %; GI = 1 %
(* Aluwini, et al. IJROBP 2014; 88: 611)
Brachy toxicity

ACUTE
- thromboses
- infections
- impaired wound healing
- fistula (French multicenter
8 vs. 22 % PC+BT vs. TURB +BT)

LATE
- hematuria (20%)
- lithiasis (7-17%)
- ulceration/ fistula (2-3%)
- ureter stenosis (1%)
- severe chronic radiocystitis (0.6%)
Brachy technique (LDR, PDR)

- Perop. (after open PC + LND)
 - lap/robo → after TURB/ after na CT/ after RCT
 - keep LN treatment in mind!
 - clips in the B. Wall to mark the T./ scar limits.

- General/ peridural anesthesia
- Foley +/- Suprapubic cath
- Start BT only after D4 (get the path full report → no BT?)
Brachy technique

PTV = CTV = scar/ T. Bed/ Residual tu + 10 mm
- full thickness of bladder
- plastic tubes in the outer half of the B. wall
- exceed T limits by 10% each side
Pro & Cons for BT

• PRO
 - at least as good as any other curative option* (selected pts!)
 - low toxicity (vs. *)
 - much shorter than EBRT
 - feasible as re-irradiation/other EBRT contraindic.
 - ensures real multidisciplinarity

• CONS
 – Highly selected pts
 – Very scarce HDR experience
 – Logistic Complicated
READY for a Change?

1. OK BT for highly selected pts in multidisciplinary high tech environment.

2. Explore new indications (Only BT→ 4M)

3. Gather/ share HDR experience

→ Collaborative international clinical studies